Estimating Time to Event From Longitudinal Categorical Data: An Analysis of Multiple Sclerosis Progression.
نویسندگان
چکیده
The expanded disability status scale (EDSS) is an ordinal score that measures progression in multiple sclerosis (MS). Progression is defined as reaching EDSS of a certain level (absolute progression) or increasing of one point of EDSS (relative progression). Survival methods for time to progression are not adequate for such data since they do not exploit the EDSS level at the end of follow-up. Instead, we suggest a Markov transitional model applicable for repeated categorical or ordinal data. This approach enables derivation of covariate-specific survival curves, obtained after estimation of the regression coefficients and manipulations of the resulting transition matrix. Large sample theory and resampling methods are employed to derive pointwise confidence intervals, which perform well in simulation. Methods for generating survival curves for time to EDSS of a certain level, time to increase of EDSS of at least one point, and time to two consecutive visits with EDSS greater than three are described explicitly. The regression models described are easily implemented using standard software packages. Survival curves are obtained from the regression results using packages that support simple matrix calculation. We present and demonstrate our method on data collected at the Partners MS center in Boston, MA. We apply our approach to progression defined by time to two consecutive visits with EDSS greater than three, and calculate crude (without covariates) and covariate-specific curves.
منابع مشابه
Does Type of Pain Predict Pain Severity Changes in Individuals With Multiple Sclerosis? A Longitudinal Analysis Using Generalized Estimating Equations
Background & Objective: Pain is a common symptom among people with MS. In the majority of MS patients, pain is chronic in nature, but it can change over time. The objective of this study was to determine if pain type can predict pain severity changes in individuals with MS over time. Materials & Methods: The research method was a longitudinal design that evaluated pain type and severity at...
متن کاملAssociation of CD24V/V Genotype with Susceptibility and Progression of Multiple Sclerosis in Iranian Population
A single nucleotide polymorphism (SNP) in CD24 has been associated with multiple sclerosis (MS) in a population based study. This SNP results in the replacement of alanine (CD24A) by valine (CD24V) at amino acid 57 in the resulting polypeptide chain. In the current study, the genotyping of this SNP and its contribution to MS in 217 patients and 200 healthy individuals of an Iranian population w...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملEstimating time-to-event from longitudinal ordinal data using random-effects Markov models: application to multiple sclerosis progression.
Longitudinal ordinal data are common in many scientific studies, including those of multiple sclerosis (MS), and are frequently modeled using Markov dependency. Several authors have proposed random-effects Markov models to account for heterogeneity in the population. In this paper, we go one step further and study prediction based on random-effects Markov models. In particular, we show how to c...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 102 480 شماره
صفحات -
تاریخ انتشار 2007